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Grad’s moment method is used to derive the linear equations of mass momentum and energy transfer of the components and 
to obtain all the transport coefficients (kinetic coefficients) for a multicomponent mixture of monatomic gases. A system of 
equations for the expansion coefficients of the non-equilibrium correction to the distribution function using a system of irreducible 
tensorial Hermite polynomials (the equations of moments) is obtained on the basis of the linearized Boltzmann equations for 
the components of the mixture. The assumptions under which these equations reduce to a system of algebraic equations for 
determining of the mass diffusion fluxes, the heat fluxes of the components and the partial viscous stress tensors are analysed. 
The advantage in writing the transport equation in a “forces in terms of fluxes” representation for solving actual problems of 
the flows of multicomponent mixtures as compared with the classical “fluxes in terms of forces” representation in the standard 
Chapman-E&cog method [l-3] is demonstrated. Different ways of representing the transport equations and expressions for the 
transport coefficients are considered in an arbitrary order of approximation with respect to the number of Sonine polynomials 
which are retained in the expansion of the distribution function (the Chapman-Cowling method). This enables one, in particular, 
to establish a direct link betweenresults obtained by different methods and to track more clearly the constraints which are actually 
used when employing classical method [l-3] and the modified method [4,5] of deriving the transport equations and calculating 
the transport coefficients in the Chapman-Enskog scheme. 0 2003 Elsevier Ltd. All rights reserved. 

1. INTRODUCTION 

The formal kinetic theory of monatomic [l-3] and polyatomic [6-81 gas mixtures is based on the use 
of systems of kinetic equations with collision integrals in the Boltzmann or Wang Chang-Uhlenbeck 
form. In the case of low Knudsen numbers, these equations are solved using the traditional Chapman- 
Enskog method (CEM) [l-3] or Grad’s moment method (GMM) [9-111, which enable one to obtain 
both the equations for the conservation (balance) of mass, momentum and energy for mixtures of gases 
(the equations of multicomponent hydrodynamics) as well as the linear transport equations for the 
diffusion fluxes of the components of the mixture, the heat flux and the stress tensor for a mixture which 
close them. 

In the usual CEM scheme [l-3], the linear transport equations are written in a form which is solved 
for the diffusion fluxes and the heat flux (for a mixture) in terms of the gradients of the molar fractions 
(concentrations) of the components, the pressure gradients and the temperatures, and the differences 
in the mass external forces acting on the different components of the mixture. Here, the stress tensor 
depends linearly on the rate of deformation tensor and the divergence of the mean mass velocity (the 
shear and bulk viscosity). We shall henceforth denote this way of writing the transport equations by 
the term “fluxes in terms of forces”. All of the coefficients occurring in this, it can be said, “classical’ 
form of representation of the transport equations, that is, the multicomponent coefficients of diffusion 
and thermal diffusion and the “instantaneous” (non-true) thermal conductivity h’, are described in the 
form of ratios of determinants of order e + 1 to determinants of order N which are obtained as the 
result of solving a truncated infinite system of algebraic equations using Kramer’s ruler. Here, N is the 
number of components in the mixture and 5 is the order of the approximations (the number of terms 
which are retained in finding the transport coefficients in the form of series in orthogonal Sonine 
polynomials in the Chapman - Cowling method (CCM) [l]. In the solutions obtained, the elements of 
the determinants are expressed in terms of so-called bracket integrals (integral brackets) of Sonine 
polynomials of different orders which, in their turn, are represented in the form of linear combinations 
of a set (indices 1 and s) Q&(T) of integrals which are functions of temperature and also depend on 
the parameters of the interaction potentials between particles of species a and p [l-3]. 
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In the case of mixtures of monatomic gases formed from electrically neutral particles, a rapid 
convergence of the above-mentioned series is observed, and it is therefore sufficient to take just a small 
number of terms of the expansion into account in this method in order to obtain reasonable accuracy 
when calculating the transport coefficients. Taking account of just the lower-order approximations at 
temperatures from room temperature up to a temperature below the temperature of the dissociation 
of diatomic molecules (2000-3000 K) gives an error which, as a rule, does not exceed 0.3% for the 
viscosity coefficient, 0.5% for the thermal conductivity and 10% for the thermal diffusion coefficient 
[2, 31. We note that, according to existing terminology [3], retention of the first non-zero coefficients 
in the expansion for the transport coefficients - this is the first approximation (5 = 1) in the case of 
the viscosity and diffusion coefficients and the second approximation (5 = 2) in the case of the 
“instantaneous” thermal conductivity 3L’ and thermal diffusion coefficients, corresponds to the so-called 
lowest approximations. Thermal diffusion is therefore sometimes referred to as a second-order effect 
[2,31. 

Taking account of the higher approximations when calculating the transport coefficients becomes of 
fundamental importance in the case of partially or fully ionized gas mixtures [12-151. We note that 
methods for solving the kinetic equations, developed for neutral gases, can also be used completely 
successfully in the case of a plasma if the latter is considered as a multicomponent mixture of neutral 
and charged particles and the divergence which arises in the effective (integrated with respect to the 
scattering angle) collision cross-sections of the charged particles is removed using a screened Coulomb 
potential or using the operation of a formal cutoff of the impact parameter at a distance of the order 
of the Debye radius [lO-12, 161. Certain mathematical difficulties arise when there is a magnetic field. 
However, these can be completely surmounted using a simple generalization of the CEM [l, 31 or the 
GMM [lo, 111. The numerical convergence of the transport coefficients of a plasma, obtained using 
well-known methods for solving kinetic equations, has been investigated in many papers [12-17, 181. 

It should be noted that the expressions for the transport coefficients, obtained from the solution of 
linear integral equations for perturbed parts of the distribution function using the CEM both by a 
variational method [3] as well as by direct expansion in series in Sonine polynomials (CCM [l]), are 
found to be completely identical. Since these equations are self-adjoint, the variational method give a 
monotonically decreasing or monotonically increasing sequence of values of the transport coefficients 
(with the exception, perhaps, of the thermal diffusion coefficient). It follows from this that, in each higher 
approximation, a more accurate value is obtained than in the preceding approximation and that no 
oscillations occur. 

Numerous transport coefficient calculations, which have been carried out up to the present time, show 
that the rate of convergence of the expansions is different for the different transport coefficients and 
depends on the nature of the behaviour of the potential function of the interacting particles (the 
“curvature” of the potential, for example) and on the ratio of the masses of the components (in particular, 
on the existence of a light component in the mixture). In the case of a fully ionized plasma, the third 
approximation [13, 15,201 gives values of the transport coefficients which are close to the exact values 
[19] while, in the case of weakly ionized gases, the order of approximation in the case of the electron 
transport coefficients which ensures the required accuracy depends considerably on the nature of the 
dependence of the electron - atom collision cross-section on the energy of the electron. 

For instance, in the case of partially ionized argon, the very pronounced Ramsauer minimum in this 
dependence, which is observed at low electron energies, leads to an appreciable deterioration in the 
convergence of the approximations: in the case of intermediate degrees of ionization, for example, at 
least the sixth approximation is required in order to obtain a more or less accurate value of the electrical 
conductivity and, in the Lorentz limit, even the twelfth approximation does not ensure the required 
accuracy [12, 141. In this connection we note that the formulae for calculating the electron transport 
coefficients can be appreciably simplified if use is made of the fact that the ratio of the mass of an electron 
to the mass of heavy particles in small [12, 221. However, in this case also, calculation of the electron 
coefficients in the higher approximations remains a laborious problem. Of course, the volume of the 
calculations increases considerably if the higher approximations for the transport coefficients of the 
heavy components (atoms, molecules and ions) are considered since, in this case, high-order 
determinants have to be calculated with elements of complex structure which depend on the ratios of 
the masses of the components, the concentrations and the temperature. 

We will illustrate the complexity of the problems which arise in such calculations by considering 
problems in hypersonic aerodynamics and heat and mass transfer. The partially ionized air plasma, which 
is formed behind the main shock wave at the entry velocity of a space vehicle in an atmosphere with a 
second cosmic velocity of 11.2 km/s or higher, contains (without taking account of argon) up to eleven 
components (molecules, atoms, ions of the major components of the air mixture and electrons) [23]. 
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In heat and mass transfer problems at these velocities, up to several tens of components are formed 
[24,25] due to the blowing in of gaseous products from the evaporation and dissociation of the heat- 
resistant coatings and their chemical interaction with the products of partially ionized air in the shock 
layer. A multiply ionized plasma with a large number of components is formed in the shock layer around 
meteoroids entering the Earth’s atmosphere or the atmospheres of other planets. Calculations of the 
flow in the shock layer of a multi-element, partially ionized gas m ixture, taking account of the higher 
approximations (for example, the second approximation for the coefficient of viscosity and the third 
approximation for the thermal conductivity and thermal diffusion coefficient) using the classical “fluxes 
in terms of forces” representation [l-3] are found to be unrealizable in practice and have not been 
carried out up to the present time. Using this classical scheme, transport coefficients have only been 
calculated for a simple (single element) plasma [13,21,26,27] and for partially ionized, eight-component 
air in thermochemical equilibrium under static conditions (v = 0, Vp = 0) and with a fixed composition 
of the chemical elements [17, 181. Meanwhile, in the case of the actual formulation of the problem of 
the flow of a multicomponent m ixture, not only do the temperature and the pressure change but, also, 
the elemental composition, due to the different diffusion properties of the components and thermal 
and barodiffusion [ 281. 

Together with the difficulties which have been noted above, there is another important fact which 
makes it difficult to use expressions written in the “fluxes in terms of forces” representation. Substitution 
of the “classical” expressions for the diffusion fluxes and the heat flux into the equations for the 
conservation (balance) of the mass of the components and the energy of the m ixture leads to a system 
of equations which have not been solved for the higher derivatives of the required functions since, in 
each of them, there will simultaneously be second derivatives of the temperature and of all the 
concentrations. At the present time, there are no general methods for the efficient numerical solution 
of such systems of equations even in the approximation of different versions of the Navier - Stokes 
equations which have been asymptotically simplified with respect to the Reynolds number 129,301. In 
order to obtain a system of multicomponent hydrodynamic equations which is simple and convenient 
for numerical solution, it is necessary to have transport equations which are solved for the 
“thermodynamic forces” (which we shall call the “forces in terms of fluxes” representation). Then. 
together with the transport equations, written in this form, the parabolized Navier - Stokes equations 
(which have been simplified by discarding, in the continuity and energy equations, the first derivatives 
of the fluxes with respect to the marching (longitudinal) coordinate, which are of the order of the inverse 
of the Reynolds number) give a system of equations which are solved for the first derivatives of the 
concentrations, temperature and, also, the diffusion fluxes and heat flux with respect to the normal to 
the surface past which the flow occurs, that is, the normal Cauchy form [31], for which efficient numerical 
methods have been developed [23,32,33]. The advantages of the transport equations in the “forces in 
terms of fluxes” form lies in the fact that this form of writing down the equations is as though specially 
adapted for calculating all the effective transport coefficients in a finite form in the case of 1oGi11y. 
thermochemically equilibrium flows with concentrations of the chemical elements which are changing 
in the stream [34,35]. In this case, by taking account of multicomponent diffusion, one can reveal the 
phenomenon of the separation of chemical elements [28]. 

Writing down the equations for the mass transport of the components in the form of the so-called 
Stefan-Maxwell equations, in which the “thermodynamic force of diffusion”, which includes the 
concentration and pressure gradients and the difference in the mass forces of the components, is 
expressed in terms of a linear combination of the diffusion fluxes and a thermal diffusion term 
which is proportional to the temperature gradient, corresponds to the “forces in terms of fluxes” 
representation. The equation for heat transfer in the m ixture is written in the same representation, that 
is, in a form which is solved for the temperature gradient (with the true thermal conductivity h) in terms 
of the mass diffusion fluxes and the heat flux. Attempts to obtain these expressions using known 
“classical” results have only been realized in the lower approximations and, in particular. require the 
use of the operation of double matrix inversion [36, 371. 

It has been shown [4,5,38] that the transport equations for a multicomponent partially ionized m ixture 
of gases in the “forces in terms of fluxes” representation can be obtained by a certain modification of 
the method of solving the infinite system of algebraic equations for the expansion coefficients in the 
CCM. Here, the first few coefficients are expressed in terms of the diffusion and thermal fluxes which 
are of interest to us and can be found from the solution of the general system of equations in any specified 
approximation with respect to the number of Sonine polynomials in the expansion. The corresponding 
transport coefficients are written in the form of a ratio of determinants of order N(k - 1) -t 1 to 
determinants of order N(k - l), the elements of which are just integral brackets of Sonine polynomials. 
AS a result, much simpler expressions (without the need for double matrix inversion) were obtained 
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for the true thermal conductivity 3L and the thermal diffusion ratios and, thereby, the simplest expression 
for the heat flux in an arbitrary approximation of the CCM. The Stefan-Maxwell equations, that is, the 
mass transport equations of the components, taking thermal diffusion and the corrections of the higher 
approximations to the binary diffusion coefficients into account, were obtained in the same approxi- 
mation. The transport equations derived in this way were also generalized to the case of a plasma taking 
an external magnetic field into account [39, 401. 

Grad’s moment method (GMM) [9-111 is an independent method for deriving the transport equations 
and for calculating the transport coefficients, and is an alternative to the CEM. It had already been 
shown in 1962 [41] that the use of this method in the case of a multicomponent gas mixture makes it 
possible, in the well-known approximation of 13N moments, to obtain the mass transport equations of 
the components in the form of the Stefan-Maxwell equations, that is, in the “forces in terms of fluxes” 
form and the expression for the heat flux which is written at once with the “true” thermal conductivity. 
At the same time, the results obtained correspond, as regards the accuracy of the calculation of the 
kinetic coefficients, to the complete second approximation in the expansion in Sonine polynomials in 
the CCM method [l-3]. This approach was later generalized to the case of multi-temperature, partially 
and fully ionized multispecies plasma in the presence of a magnetic field [42-45, 10, 111 and, also, to 
the case of polyatomic gases and gaseous mixture [7]. 

At the same time, the GMM can be generalized to the case when a large number of polynomials, 
and the coefficients corresponding to them, are taken into account in the expansion of the distribution 
function [lo, 111 which enables one to develop a scheme for obtaining expressions for the diffusion 
fluxes and heat flux in a multicomponent gas mixture in the “forces in terms of fluxes” form with transport 
coefficients which are calculated in any approximation. 

Below, an infinite system of coupled quasilinear differential equations for the expansion coefficients 
of the distribution function in a system of irreducible tensorial Hermite polynomials (the equations of 
moments) is obtained on the basis of the linearized kinetic Boltzmann equation. The assumptions under 
which these equations reduce to a system of algebraic equations for determining the mass diffusion 
fluxes, the heat fluxes of the components and the partial viscosity stress tensors, which is equivalent to 
the systems of equations obtained in the modified method developed in [4,5,39, 401, are considered. 
The different forms of representation of the transport equations and the expressions for the transport 
coefficients in an arbitrary order of approximation are discussed. This enables us, in particular, to 
establish a direct link between the results obtained using the different independent approaches and to 
track more clearly the constraints which are actually used in the conventional and modified procedures 
for solving the system of kinetic Boltzmann equations in the CEM. 

2. THE EXPANSION OF THE DISTRIBUTION FUNCTION AND THE 
EQUATION OF MOMENTS 

We will consider an N-component, partially ionized gas mixture made up of an arbitrary number of 
species of neutral atoms, ions and electrons. The non-equilibrium state of such a mixture (a plasma) 
is described by a distribution function of particles of species a which we will seek in the form 

f, = fho’( 1 +$a)v ff’ = na($yexp(-$) (2.1) 

wheref:) is the local Maxwell distribution, Qa is a small correction ( ( Qa 1 + l), ya = m,/kT, m, is the 
mass of a particle, T is the temperature, k is Boltzmann’s constant, n, is the number density of particles 
of species a, c, = v, - u is the relative velocity of a particle and u is the mean mass velocity of the 
mixture. 

The correction +,(v,, r, t) satisfies the system of linearized kinetic Boltzmann equations (3, 81 

Wnf~'+QA = &&p (2.2) 
P 

where the differential operator notation 

D, = d+(c,.V)+ 
dt (2.3) 

is used. 
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Here, F, is the external force acting on the particle and V, is the gradient operator in velocity space. 
In the general case 

F, = e,E + X, 

where E is the electric field strength, X, are forces of a non-electromagnetic nature, and e, = Z& is 
the charge of a particle (for electrons, 2, = -1). For simplicity, we shall assume that there is no magnetic 
field present. 

The linearized collision operator L,a on the right-hand side of Eq. (2.2) is defined in such a way 
that [3] 

~~~~~ = JfSp’(& + cp’tp - $a - ~,~w,pv~vv,p (2.4) 

Here, g is the relative velocity of the colliding particles, <r&g, Q) is the differential scattering cross- 
section, Sz is the solid angle of scattering, primes refer to quantities which are determined after the 
collision of the particles, and the subscript 1 is introduced in order to distinguish identical colliding 
particles when a = p. 

Taking into account the fact that 

1nfC) = Inn, - ;lnT - lyu(v, - u)’ + const 

the expression for D,lnf(aO) is easily transformed. 
As a result, 

D,lnfc’ = 
i( 

g$+v.u 
cl ) 

+$&3) -- 
( 

;;+$I + 
1 

(2.5) 

Here, ptr = n,kT and the rate of shear tensor (or the rate of deformation tensor with a trace equal to 
zero) 

(2.7) 

is introduced. 
We now expand the non-equilibrium correction en in series in an orthogonal system of irreducible? 

tensorial polynomial H,“” (5,) of the dimensionless relative velocity of the particles & = yi’* 146, 10, 
111 

4)~ = C C amnnE~..,im(r* t)G~...im(5cz) cw 
m=On=O 

Here, o,, is a normalizing factor 

0 mn = 
(2m + I)!(m + n)! 

n!(m!)2(2m + 2n + l)! 

The subscripts i t, . . . , i, correspond to the Cartesian components of a rank m tensor (henceforth, these 
subscripts are omitted). 

Apart from normalization, the irreducible tensorial Hermite polynomials P”(g) are the product of 
the Sonine polynomials .Stl+1,2 (c2/2) and the tensorial spherical harmonics P@)(k) [6. 461 

+An irreducible tensor is a tensor with a zero convolution with respect to any pair of indices; in particular, an irreducible 
second-rank tensor in continuum mechanics is called a deviator; the tensor (2.7) is a deviator. 
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P”(g) = (-2)“n!S;+ ,,*(52/2>P’“‘(g) 

The first few polynomials P@‘)(e) have the form 

We now introduce the definition of a scalar product of functions in Hilbert space 

The orthogonality condition for the polynomials Hmn(Q then takes the form [S] 

(H”“, Hm’“‘) = ( ctmn)28mm.~nn~A(m) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where cP is a normalizing coefficient: 

Ill” 

[ 

2”m!(2m + 2n + l)!! 1’2 a = n!(2m f l)!! I 

S,, is the Kronecker delta, A@) 1s a unit projection tensor and, in particular [S] 

Ai;’ = Gikr A$ = 

The coefficients a,” in expansion (2.8) are determined from the conditions for the polynomials to 
be orthogonal by the relation 

(2.13) 

which enables us to express these coefficients in terms of the corresponding moments of the distribution 
function. The first few coefficients are written as 

00 
aa = 0, a: = 3(T, - T)/T, a: = yFwai 

ati = 2yrhailpa, a:, = A,~,J~~ 
(2.14) 

where 
ha = qa-5f2pawa (2.15) 

is the reduced partial heat flux, while the diffusion velocity w, = u, - u, the partial viscous stress 
tensor &, and the partial heat flux q, are defined by the expressions 

Wa = <C,,$Jv ia = Pa(cCJa9$Js, qa = !jPalcica9 $cJ (2.16) 

Here, pa = man, is a mass density of particles of species a, ii, = @, -pa& where fia is the partial stress 
tensor,p, = n,kTis the partial pressure and 6 is a unit second-rank tensor. The temperature of particles 
of species a is defined here as 

kT, = kT+ 1/3 m,(c;, $a) (2.17) 

Notation of the type aa. is used henceforth for irreducible symmetric tensors so that, (cTa)ik = 
c(J&& - 1/36ikc#$ for example. 



Transport equations with transport coefficients in higher-order approximations 371 

The system of linearized equations of the moments is constructed by multiplying the kinetic equation 
(2.2) byf(,o)H,m with subsequent integration with respect to the velocities. It can be represented in general 
form as 

where 
(2.19) 

(c is a moment with respect to the collision integral). 
Note that each of the terms in the expression for D,-Jnf&o) contains some of the irreducible Hermite 

polynomials as a factor since, by definition, 

Hr = 1, Hz = y&- 3, Hz = yFcai 

H;; = yf,/2ca;(yac: - .5), Hzk = yu(caicak - 8&) 
(2.20) 

Calculation of the first term on the left-hand side to Eq. (2.18) taking into account the orthogonality 
condition for the irreducible Hermite polynomials (2.12) gives 

n,( Hz”, D,lnfc’) = nu 
i( 

(2.21) 

An irreducible second rank tensor Vu has been introduced here such that (VU)ik = E&. 
In the expression obtained after appropriate integration in the second term on the left-hand side of 

Eq. (2.19, all the non-linear terms are omitted, including the product of the moments (or the coefficients 
ncp,““) for small gradients of the corresponding thermodynamic variables and, also, for small potential 
gradients (weak external fields). As a result, we obtain 

n,( HE^, D&J = $ + Vn,(caI$n, $3 + non-linear terms (2.22) 

The second (flow) term on the right-hand side of equality (2.22) after the expansion for I& (2.8) has 
been substituted into it, can be represented in the form of a linear combination of the derivatives with 
respect to a coordinate of the coefficients of (m + 1)th and (m - 1)th tensor dimensionality ]8] 

The coefficients A, and B, are given the expressions 

A m+l,/ 
amn = &(c,H:“, H;+“‘), B;,;” = $&H;‘, e-‘,1) 

(2.23) 

(2.24) 

The notation Vn&-I” when m 3 2 corresponds to a symmetric irreducible tensor. For instance, if 
aa m-‘,’ is a vector (for m = 2) then Vna$ ’ . 1s an irreducible second-rank tensor with components 
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We will now calculate the right-hand side of the equations of moments (2.18), that is, the quantities 
R,M” (2.19). TO do this, we substitute the expressions for the perturbations of the distribution function 
ea and Qs into the linearized collision integral using expansion (2.8). As a result, expression (2.19) can 
be written in the form 

(2.25) 

were the so-called partial integral brackets of irreducible Hermite polynomials are introduced. The 
general definition of integral brackets has the form [l-3] 

[F, Gl& = &If :'f ;‘( F, - F;)G,gaapdQdc,dcp 

[F, @$ = ---$f:‘$‘(Fp - Fb)G,goapdi2dc,dcg 
(2.26) 

We use the definition of the polynomials H,““(fJ (2.9) and change the variable 5, to the variable 
WU 

! > 
I/2 

w, = $T c, = 2-‘Oga 

Then, 

The relation 

H;“(W,) = (-l)n2n+m’2n!fm+,n(W3R(m)(Wa) 

R”@( W,) = 2-m’2P(m)( 5,) 

[ R(@, Rtm)] = & [ km), R’@] a,,,, 

holds [8] for the integral brackets of the polynomials R@)(W). 
The final expression for R,m” then takes the form 

where 

and the expressions for&p and B,s are written as 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

A 1;’ = wq3Q,,rl&+ ,nW2)Rm(W, S;+ ,nW2P’“‘(Wl~e 
mnl 

(2.31) 
B aif = ~a~sQ,,l[sfn + ,nW2Mm(W), s: + ,nW’2)R’“‘(W)l;p 

The coefficients Qmnr have the form 

Q mnI = (-2)“+‘2m2;!; l(T,I = (2m)!(m+l)!n! (4”+12n+r+m 
(m!)2(2m + 21+ l)! 

(2.32) 

The integral quantities [. . .I,$ and [...I& correspond to known partial integral brackets of Sonine 
polynomials which are introduced in the CEM [l-3]. 

For the first two tensor polynomials Rem)(W), which are used in writing down the integral brackets 
in the CEM, we have 
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R;‘)(W) = Wi, RI:‘(W) = WiWk - 6i,W2 

When the expressions obtained above are taken into account, the system of Iinearized equations for 
the moments (2.18) can be written in the following final form: 

Equations (2.33) must be supplemented by the relations 

I: manay, -“a: = 0, Cnaaz = 0 
a a 

(2.33) 

which correspond to the conditions resulting from the definitions of diffusion velocities, the mean mass 
velocity and the temperature of the mixture, 

c manaWa = 0, xn,Ta = nT (2.35) 
a a 

The equations of moments (2.33) form an infinite system of coupled equations for scalar (m = 0). 
vector (m = I) and tensor (m = 2, 3, . ..) quantities. A search for specific solutions is possible if it is 
confined to a finite number of terms in expansion (2.8). Depending on the values taken for m and II, 
the general system of equations of moments (2.33) decomposes into independent systems of equations 
for determining the scalar, vector and tensor coefficients n&y. For instance, when m = 0 and n = 0, 
these equations correspond to the equation of continuity, and summation with respect to a of the 
equations for m = 1 and n = 0, as well as for m = 0 and n = 1, leads to the equation of motion and 
the linearized equation of the energy of the mixture. When conditions (2.35) are taken into account, 
the corresponding conservation equations take the form 

dn 
dt 

a+naV-u+V.n,w, = 0 

du pX+Vp+VX+Cn,Fa =‘O 
a 

(2.37) 

nkd~+~pO.u+~V.q-kTCV.n,w, = 0 
a 

(2.38) 

Were, p = nkT is the total pressure, +? = &+&, is the viscous stress tensor and q = &qu is the heat 
Aux of the mixture, respectively. Note that, using Eqs (2.37) and (2.38), it is possible to eliminate the 
time derivatives du/dc and dT/dT from the left-hand side of Eq. (2.33) while the equation of continuity 
(2.36) on the left-hand side of (2.33) is satisfied identicaly. 

3. THE APPROXIMATION OF 13N MOMENT 

The well known approximation of 13N moment [9, lo] is the most commonly used approximation in 
the moment method. In this method, terms, including tensorial polynomials of not higher than rank 
Cm s 2) with values n = 1 for m = 0, n = 0, 1 for m = 1 and n = 0 for m = 2, are retained in the 
expansion of the distribution function (2.8). The equations of moments are written for the variables 
II, (or p,), u and T, which are included in the weight function (the local Maxwellian distribution) and, 
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also, for the coefficients of the expansion at’, a:“, ai’ and ai’, which are expressed in terms of moments 
of the distribution function, which have an explicit physical meaning. 

The first few of these moments are the relative temperature difference (T, - T)/T, the diffusion velocity 
w,, the partial viscous stress tensor X,ik and the reduced partial heat flux h, (2.15) which are connected 
with the corresponding expansion coefficients by relations (2.14). 

The expansion of the correction to the distribution function in the approximation of 13N moments 
takes the form [lo] 

(3.1) 

or, in the physical variables (2.14) 

@a = YaWa ’ =a + - l :~(r~~-3)+frYaR~~~icat-;6,,c2)+jy, h+yac; - 5) (3.2) a a 

We now turn to the linearized equations of moments (2.33). It has already been mentioned that known 
equations for the conservation of the number of particles of species a, and the momentum and energy 
of the system (2.36)-(2.38) appear in the complete system of equations of moments. When m = 0 and 
rz = 1, we obtain a system of equations for the relative temperature differences (T, - T)/T. Analysis 
shows l[lO] that the order of these quantities (when there are no external forces) is determined by the 
spatial derivatives of the heat flux and the diffusion flux and not by the gradients of the initial macroscopic 
parameters as in the case of the remaining vector and tensor fluxes. The equations for the temperature 
differences are therefore not considered below. When m = 
equations for the coefficients aA0 

1 and n = 0, 1, a compatible system of 
and a:’ (or for the diffusion velocities and the reduced heat fluxes of 

particles of species a) and, when m = 2 and it = 0, equations for determining the coefficients ato (or 
the partial viscous stress tensors) follow from the equations of moments (2.33). 

Instead of the equations for the coefficients a$ aiyk, and a$, it is convenient to use the equations 
for the physical quantities w,, Tt,ik and ha directly. By making use of relations (2.14), these equations 
can be represented in the form [lo, 411 

du Vp, + p,-(i~ - n,F, + VSa = nzay~“R~ 

dnaik 

dt 

dha S k 7 + zm,p,VT + :I’& = ~~~‘*R~ 

(3.4) 

(3.5) 

The abbreviated notation 

has been used here. 
In this case, (V &a)i = &,ik/&k. 
The specific expressions for the right-hand sides of Eqs (3.3)-(3.5) follow from the general 

representation of the quantities Rz (2.29) and the expressions for the integral brackets of Sonine 
polynomials which associate them with the so-called Q-integrals [l-3]. At the same time, the general 
expressions for the right-hand sides in the approximation of 13N moments have the form [lo, 41-431 

n~,y,'~Rc = ~Bh'B)(~~-w~)+~~~p$; ha hp --- 
P maPa "B& > (3.6) 

(3.7) 
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kT-.mIi kT h 
,ra Ra = mc, 

(6jhp 5pap (2) B’a;l” + BaB- + 
PU 

----BaB(wa-wg) 
Pp 2ma I (3.8) 

Here, uLaP = m,mpl(m, + mp) is the reduce mass of particles of species a and p and the coefficients 
B&“d are found to be linear functions of the Chapman - Cowling Q-integrals [ 1 J. In particular. 

Here, 

(3.9) 

(3.10) 

Expressions for Bap (‘1 when y1 = 3,4, 5, 6 have been presented earlier in IlO, 431. 
It is useful to carry out some estimates for the further simplification of the equations of moments. 

The quantity Bjfp) can be represented in the form $$ = -nanapr,$ where r,$ = ( 16/3)npR,$ is a certain 
effective collision frequency for particles of species a and @, since RtP = (gap)Qap, since (gap) = 
(8kTi7r~,&rR is the mean relative velocity of the particles and Qap is the effective diffusion scattering 
cross-section (for the model of molecules as solid, elastic spheres identical with the geometric collision 
cross-section). Specific calculations show that all the remaining coefficients B$ are of the same order 
of magnitude as the coefficient B$. 

We will now adopt definite conditions for the macroscopic (hydrodynamic) description of the gas 
mixture and assume that the macroscopic parameters of the components in the mixture on the whole 
change slightly at distances of the order of the mean free path h and during a time of the order of the 
time t between collisions of the particles, that is, 

h/l.,+ 1, 2/T,<< 1 (3.11) 

where Lo and to are the characteristic linear and time scales of change in the macroscopic quantities. 
Note that conditions (3.11) correspond to the smallness of the Knudsen number, which is usually assumed 
in the CEM [l-3]. 

Taking into account the order of magnitude of the coefficients B$, it is easy to see that, by virtue of 
the second condition of (3.11), the derivatives of the corresponding moments with respect to time on 
the left-hand sides of Eqs (3.3)-(3.5) can be neglected compared with the right-hand sides. In practice, 
this means that, in the case being considered of a slow change in the parameters of the mixture with 
time during a time interval equal to certain times between collisions of the particles, there is an onset 
of a quasi-equilibrium to which a system of equations which does not contain time derivatives of the 
moments of the distribution function can be applied approximately instead of Eqs (3.3-3.5). 

As a rule, terms of the form V&, and aqai/i3xk in Eqs (3.3)-(3.5) are also of the order of (L/Lo)2 and 
taking them into account in the CEM corresponds to the Burnett approximation ]1,3]. It has been shown 
in [41] that the need to take account of the first of these can arise in the treatment of the diffusion of 
the components of a mixture in the case of slow flows (in the case of the steady viscous flow of a mixture, 
for example) when the longitudinal and transverse scales in the change in the gas parameters in the 
flow are quite different and the derivative of the viscous stress tensor with respect to the transverse 
coordinate is of the order of magnitude of the longitudinal pressure gradient. We shall return to this 
question in the next section. 

4. THE EQUATIONS FOR THE MASS TRANSFER OF THE 
COMPONENTS IN STEFAN-MAXWELL FORM 

We will now show that it is possible to obtain important relations from Eqs (3.3) for determining the 
diffusion velocities of the components of the mixture in a form which corresponds to the”forces in terms 
of flows” representation discussed in Section 1. Omitting, in accordance with conditions (3.11) the term 
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dp,w,/dt on the left-hand side of Eq. (3.3), instead of du/dt, we substitute an expression which follows 
from the general equation of motion of the mixture (2.37). As a result, instead of the left-hand side, 
we obtain 

(VP, - caVp) + 
i 

n,F, - ca&zaFa 
1 

+ (Vii, - c,VEt) 
a 

where c, = pa/p is the relative mass concentration of particles of species a. 
We shall first consider the case when terms with derivatives of the viscous stress tensor can be 

neglected, assuming them to be small. The small of equations (3.3) then takes the form [lo, 411 

pd, = ~Blx’e’(w, - wp) + &z&$(--$ - &) 
P a a P 

(4.1) 

where we have introduced the vector d,, called the diffusion force vector (or, in the terminology of 
non-equilibrium thermodynamics, the “the thermodynamic diffusion force” [47]) defined as [2,3] 

d, = Vx, + (x, - c,)Vlnp -p-l 
t 

n,F, -c, i nSFp 
I p=1 

(4.2) 

Here, X, = n&z is the relative molar concentration of particles of species a. 
Another important case corresponds to diffusion accompanying the steady viscous flow of a gas mixture 

in a channel [41], when it is possible to put duldt = 0 in the equation of motion (2.37). As a result, this 
equation takes the form 

Vp+V;--nnFF = 0 
a 

and the left-hand side of Eq. (3.3) becomes 

Vp, + VEca - n,F, 

It will be shown below that the solution of the equations of moments for the tensor expansion coefficients 
gives 

naik = -2q&ikp TCik = CKaik = -2~&ik (4.3) 
a 

where na and n are the partial and total coefficients of viscosity. In this case, assuming that rla and n 
are constant (or depend weakly on a coordinate), we obtain 

As a result, the system of equations for the transport of components in the steady viscous flow of 
gas becomes 

(4.4) 

The main effect which arises in this case consists of the overdetermination of the coefficient of 
barodiffusion and the force term in the equations of the diffusions velocity of the components [41], 
since the quantity c, in definition (4.2) is replaced by the ratio na/n. As a result, the barodiffusion ratio, 
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unlike in the conventional case, becomes mainly a kinetic quantity and depends not only on the 
differences in the masses of the particles of the components but also on the differences in the effective 
collision cross-sections of particles of a different species [41]. 

The physical meaning of the equations for the diffusion velocities of the components becomes more 
obvious if it is noted that Eqs (4.1) or (4.4) can be obtained directly from the equation of motion of a 
separate component of the mixture, which is obtained by multiplying the complete (non-linearized) 
kinetic equation by Wai = m,u,; and integrating with respect to the velocities. This equations can be 
represented in the form [lo] 

daua 
pa dt -++%&z,F,= R, 

d,idt = aiat + Ua,aian, (vP,*)~ = apa*ikiaxk 
(4.0) 

The quantity P&k is connected with Pctik by the relation 

‘,*ik = ‘aik- PaWaiWak* ‘aik = PaGik + %ik 

In practice, the difference between Pain and Paik turns out to be unimportant since neglect of the 
quadr$ic terms with respect to the rates of diffusion corresponds to neglecting terms of the order of 
(h/L&. The quantity I& = ma$li2 lo R, is the magnitude of the average momentum transferred during 
collisions of particles of species a with all the particles of the remaining species in the mixture. It is 
also called the “diffusive force of friction” [lo]. In the first term on the left-hand side of Eq. (4.6), the 
term d,u,/dt can be replaced by duldt, which corresponds to neglecting terms of the order of dw,,/dt 
compared with the terms on the right-hand side, which are of the order of magnitude Z$W~ and agrees 
with condition (3.11). As a result, we arrive at the initial equations for the diffusion velocities (3.3), in 
which it is necessary to omit the term with the time derivative of pl,w,, and, consequently, at Eqs (4.1) 
or (4.5). 

The coefficients B(,‘) and B$ on the right-hand side of Eq. (4.1) can be expressed using the coefficient 
of binary diffusion D,p]l, corresponding to the first approximation in the expansion in Sonine P 
polynomials in the CCM [l-3], and the coefficient C& 

As a result, Eqs (4.1) become 

Here, 

(4.7) 

(4.8) 

(4.9) 

Taking into account the second term on the right-hand side of Eq. (4.8) (after substituting the 
expressions for the partial reduced heat fluxes into it) we obtain the contribution corresponding to 
thermal diffusion and to the correction of the second approximation (with respect to the number of 
Sonine polynomials which are taken into account in the expansion in the CCM) to the coefficients of 
binary diffusion. If kap = 0 (which holds, in particular, in the case of the model of Maxwellian molecules 
participating in collisions), the equations for determining the diffusion velocities of the components 
take the form 

n,npkT c- (~a-wp) = --Ma 
P n[Daf.31* 

(4.10) 

which corresponds to the usual representation of the equations of transport of components in a 
multicomponent mixture in Stefan-Maxwell form. Equations (4.10). as regards the accuracy of the 
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calculation of the transport coefficients, correspond to the first approximation of the CCM. The 
equations, obtained by substituting the expressions for the partial reduced heat fluxes h, and hp into 
the right-hand side of Eq. (4.8) correspond to the next (second) approximation of the CCM. 

5. THE HEAT FLUX AND VISCOUS STRESS TENSOR 

The partial reduced heat fluxes are found from the solution of Eqs (3.5) in which we omit the time 
derivative dh,/dt and the derivative with respect to the coordinate dnaiklaxk. In the viscous flow of a 
mixture, taking this last term into account leads to an additional contribution to the total heat flux, 
which is proportional to the pressure gradient and, also, to the second-order approximation, corrections 
to the barodiffusion constant in the equations for the diffusion velocities of the components [41, lo]. 

The system of equations obtained here, taking into account expression (3.8) and the form of the 
coefficients B$)when n = 5, 6, 7 [lo, 41, 431, can be written in the form 

The coefficients ALb are defined as [3, lo] 

2 

Al' = L+QTx xaxf3 

aa Ihaal* 25P P*alrna + mp)2n[D@ll 
X 

x Em2 +gm2+3m2B* 2 a4P 84 +4m m A* a P aP 

Here 

(5.1) 

(5.2) 

(5.3) 

[haal1 is the thermal conductivity of a pure gas formed from particles of species a, calculated in the 
first approximation of the CCM [l-3] and [D,p]i is the binary coefficient of diffusion of particles of 
species a and p, defined by expression (4.7). 

The solution of Eqs (5.1) can be represented in the form 

h, = - (5.4) 

Here 

ha = x.i - h”lPa 

p= ,xp LPI 
(5.5) 

is the partial thermal conductivity. The notation ]A ] and ]A ( ap corresponds to an N-th-order 
determinant composed of the coefficients A,p and the cofactor of the element pa of the determinant. 

In accordance with relation (2.15) for h, and as a result of summation over a, the total heat flux in 
the mixture is given by the expression 

N N 

Q = sCPaWa+ Cha 

a=1 a=1 
(5.6) 
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or, taking definition (5.4) into account, by the expression 

379 

(5.7) 

The last term on the right-hand side can be transformed by initially interchanging, under the summation 
signs, the subscripts cx and y and, then interchanging the subscripts p and a in the resulting expression. 
As a result, the expression for the total thermal flux in the mixture becomes 

Here 

(5.8) 

(5.9) 

where h is the overall thermal conductivity of the mixture and D& is the coefficient of thermal diffusion 
of particles of species a and p [lo, 411. 

The expression for thermal conductivity can be represented in the form of the ratio of two 
determinants of order N + 1 and N 

(5.10) 

The expressions for h and Dzp correspond in this case to the results of the full second approximation 
of the CCM [2, 31. They are distinguished by the simpler form of the corresponding quantities which 
are presented, for example, in [2], where the thermal conductivity h and thermal diffusion coefficient 
Dz(not to be confused with D&) are expressed in terms of the ratio of (2N + 1)-th- and 2N-th-order 
determinants, while the expressions obtained above include the ratios of (N + 1)-th- and N-th-order 
determinants. This is connected with the fact that those terms of the expansion in Sonine polynomials 
were used [2] when calculating the transport coefficients, which make only the first (non-vanishing) 
contribution to these coefficients. In particular, in order to obtain a non-zero result for the diffusion 
coefficient, it suffices just to take account of one term in the expansion (corresponding to the coefficient 
a’,O in the scheme proposed here). The correct calculation of the h and 0:s involves taking account of 
two coefficients (a? and a’,’ in the scheme being considered). 

Expressions for the partial and total viscous stress tensors have already been considered above. They 
follow from the solution of Eq. (3.4) in which the time derivative dZaik/dt and the derivative of the heat 
flux with respect to a coordinate are omitted. When the expression for Riyk (3.7) is taken into account, 
these equations can be represented in the form 

N 

p2 c H$$ = -2~~5;~ 
p=1 

where 

(5.11) 

flu = 2 
m:1, + c 

2xaxf3 

B+a(ma+ mg)n[Daf31, ( 
3?3 * 

l+ ijmAap 
a 1 
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(5.12) 

The coefficients i?Z$ are determined as previously in [2, 31 and [Q& is the viscosity of the pure gas 
formed from particles of species a, calculated in the first approximation of the CCM [2,3]. 

The linear relation for the components of the tensor of the viscous stresses in the mixture has the 
form 

Here 
lcik = -2qEik (5.13) 

or 

e . . . HE n, 

;, . . . iNi 

x, . . . xjq 0 

(5.14) 

(5.15) 

The expression obtained is in complete agreement with the result corresponding to the first 
approximation of the CCM [2,3]. 

We will not give here the corrections of the second approximation in the equations for the mass 
transport of the components which arise when the partial reduced heat fluxes (5.4) are substituted into 
Eqs (4.1) or (4.4). The corresponding results, together with the expressions for the heat fluxes and the 
viscous stress tensor, are considered in the following section within the framework of the higher 
approximations with respect to the number of Sonine polynomials in the expansion of the distribution 
function. 

6. HIGHER APPROXIMATIONS 

The higher approximations of the moment method correspond to taking a greater number of moments 
into account in the expansion of the distribution function (2.8) than the set of quantities considered 
above corresponding to the 13N moment approximation (3.1). The additional coefficients a? (when 
m = 1, n > 1 and, when m = 2,n > 0) are associated with moment of the distribution function which 
now do not have an explicit physical meaning. However, at each new stage of the approximation, when 
we confine ourselves to a finite number of terms in the expansion, the equations for these coefficients 
occur in the complete closed system of equations together with the equations for a::, aitk, and a$ or 
w,, x,-&k and h,, and thereby refine the definition of these quantities at each order of approximation. 
Actually, the solution of this system enables one to find expressions for the diffusion velocities of interest, 
the heat fluxes and the viscous stress tensor, taking account of the contribution from the higher-order 
coefficients in the expansion. 

Comparison with the expansions of the distribution function which are used in the CEM [l-3] shows 
that, at the level of the first approximation with respect to the Knudsen number h/Lo, the equivalent 
expansion for& in the moment method must be chosen in the form 

fa = fz' 1 + c o,,u;H&)+ c cczna~,H~k(~,> (6.1) 
n=O n=O 

that is, the tensorial polynomials I’@) of not higher than the second rank (m c 3) must be included. 
The expansion for qa, taking account of the definition of. the polynomials Ii,“” (2.9), can then be 
represented as 
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The use of an arbitrary number of Sonine polynomials in expansion (6.2) enables one to calculate 
the fluxes and the corresponding transport coefficients in any given approximation. We note that, in 
order to establish complete correspondence between the Chapman - Enskog method and Grad’s 
moment method at the level of the Burnett and following approximations to the distribution function, 
it can be proved to be necessary to take account of tensorial polynomials of a higher rank with respect 
to the index m, for example, the polynomials $1. However, this question requires special discussion 
and is not considered here. 

The system of algebraic equations for the coefficients a; follows from the general system of equation 
(3.23) if, in accordance with the analysis carried out above, the time derivatives and the spatial derivatives 
of the corresponding coefficients are omitted in each of the equations. At the same time, the time 
derivatives dn,-,/dt, duidt and dT/dt on the left-hand side of the equations are replaced using the 
conservation equations (2.36)-(2.38), in which the derivatives of the dissipative fhnces are also omitted 
(that is, using Euler’s equations). As a result, the left-hand sides of the equations for the scalar expansion 
coefficients (m = 0, n = 0, 1) vanish. When m = 1, we arrive at a system of equations for the vector 
quantities az, among which the coefficients a: and as related to the quantities w, and h, of interest, 
appear 

(6.3) 

The quantity d, is defined by expression (4.2). 
When m = 2, a system of equations is obtained for the coefficients a& among which the coefficient 

azk associated with the partial viscous stress tensor IC,ik, appears 

5-l xc C$u~~, = -2naEik 
p f=O 

5-l 

cc C$l2,: = 0, O<nSe-1 
p I=0 

(6.4) 

The systems of vector and tensor linear algebraic equations (6.3) and (6.4) can be solved for the 
coefficients a; and u$ for any finite value of 5. As a result, the coefficients do, a;$ and a$ or the 
parameters w,, rzaik and h, (“fluxes” in the terminology of the thermodynamics of non-equilibrium 
processes) are found. Note that the approximation of 13N moments, which has been considered above, 
corresponds to the use of the first two esations of (6.3) for the coefficients ufr91 and a:: (5 = 2) and 
one equation of (6.4) for the coefficient uaik (5 = 1). 

Instead of the coefficients Cg, we introduce the symmetrical coefficients &b which are defined as 

or 
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where 

a;; = n,np&( W2)W, s&J W2)W]& 
B$ = n&&( W2)W, Q W2)W& 

Taking definitions (2.14) into account system of equations (6.3) can be rewritten as 

This system of equations must be supplemented with the condition 

N 

c namow, = 0 

The new variables 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

are used in Eqs (6.8)-(6.10) and, in particular, 

bJ = w,+ $, = -;hg = -;(cJ~- ;ppwp) (6.13) 

System of equations (6.8)-(6.10) is completely identical to the equations of the modified CCM 
obtained earlier [38-45]. In the case where 5 = 2, this system corresponds to the equations for the 
variables w, and h, obtained in Sections 4 and 5 in the 13N moments approximation. 

In the general case, the solution of system of equations (6.8)-(6.10) leads to expressions for the 
diffusion flux Ja = paw, and the reduced total heat flux h = ~~=Ih,, which depend linearly on the 
“thermodynamic forces” dp and VlnT 

(6.14) 

h = q-;kTi n,w, = -x(&VT- P i %zd, (6.15) 
a=1 a=1 

Here D,p and DTa are the diffusion and thermal diffusion coefficients of a multicomponent mixture 
[2,3] and 1’ is the “instantaneous” thermal conductivity of the mixture (for the case when all the diffusion 
thermodynamic forces vanish). 

Relations (6.14) and (6.15) correspond to well-known results of the standard CEM procedure [2,3]. 
The coefficients of proportionality in these relations (the transport coefficients), determined in an 
arbitrary approximation with respect to 5, are written in the form of ratios of Nt + 1-th- and N-th- 
order determinants composed of the elements adfp. 
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Another algorithm for solving system of equations (6.8)-(6.10) has been proposed [38,4,5] which 
leads to the equations for the diffusion velocities of the components being written down in Stefan- 
Maxwell form, and to an expression for the total heat flux, which depends linearly on the temperature 
gradient and the diffusion velocities of the components w (but not the diffusion forces dp). In the case 
of such an approach, system of equations (6.9)-(6.10) w h ich can be represented as 

N c-1 N 

&VlnT&,, - c q”aoBwp 
B=l/=l p=1 

a = l,..., N; n = l,..., c-1 

is initially solved. 
The expressions for the reduced partial heat reflux are written in this case in the form 

hu = -$,kTe,, = -&VT + nkT i k,,pwp 
@=I 

where 

0 0 . . . aa, 0 . . . 

h = 75nk x, 4:: ---w-x . . . 4;; q;;“+l . . . 
a 

8 tql a o q21 2n 2,n+l 
rs -*- 4rs 4, ... 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

0 0 . . . 6,, 0 . . . 

---x, 51 
10 II 

kTap = 4rp 4, ... BfsR qf;*+’ ... 
4ql 20 21 2n 2,n+l 

4r$ 4,s --’ 4rs 4rr ..’ 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

Here, qc denotes a square matrix of order N with elements qgi, 8, denotes the corresponding row 
of Kronecker deltas Sap, and X, is a column of the values of x, (a, p = 1, . . . , N). The notation 14 ] 
corresponds to the determinant of system of equations (6.16) with elements qr. 

Note that the coefficients 42; satisfy the conditions [S] 

N N 

4:; = q;;, c q$ = 0, c 4;; = 0 (6.20) 
a=1 E=l 

The last two relations follow from the law of conservation of momentum of the mixture. 
For the total reduced heat flux in any approximation with respect to 5, we have 

h = - h(QVT+ nkT i k,(&w, 
a=1 

The thermal conductivity h and the thermal diffusion ratios kTu are given by the expressions 

(6.21) 

(6.22) 
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0 x, 0 . . . 

(6.23) 

By virtue of conditions (6.20), the values of the thermal diffusion ratios kTa are not independent but 
are connected by the relation 

N 

(6.24) 
a=1 

Taking definition (2.15) and condition (6.20) into account, the expression for the total heat flux in 
the mixture can be represented in the form 

Q (6.25) 
a=1 a=1 

The Stefan-Maxwell equations are obtained by substituting the solutions of Eqs (6.9) and (6.10) into 
Eq. (6.8). The first term on the left in Eq. (6.8) is transformed using the expression for qz [2,3] 

The final result is written in the form [40] 
N 

-Pda = C 
n,ngkT 

n[Dagllfap twa- we) + pk,VhT 
8+a 

(6.26) 

(6.27) 

Here,fa&) = [ 1 -Da&)]-’ is the correction of the higher approximation to the coefficient of binary 
diffusion [D~]r, where 

0 q;; q; . . . 

2n2[Dd1 qfz qff qif . . . 
Aap(5) = 3 nanglql 20 21 22 

4ra 4rs 4rs ... 
. . . . . . . . . . . . . . . . . . 

(6.28) 

Unlike the usual expressions for the diffusion, fluxes and the heat flux (6.14) and (6.13, obtained 
within the framework of the CEM and which correspond to the “fluxes in terms of forces” representation, 
the diffusion equations in the Stefan-Maxwell form (6.27) and the expression for the heat flux (6.25) 
correspond to a system of transport equations which is solved for “forces in terms of fluxes” in any 
approximation with respect to 5. The advantage of the expressions obtained using this approach lies 
in the fact that the transport coefficients in them are expressed in terms of a ratio of determinants of 
a lower order, in fact, a ratio of (N(t - 1) + l)-th- and (N(c - 1)-th-order determinants, which appreciably 
simplifies the calculation of the corresponding quantities. Furthermore, the expression for q in the form 
of (6.25) is preferable in specific use since, unlike the “instantaneous” thermal conductivity a’, the “true” 
thermal conductivity 3L can be measured directly. This is due to the fact that a steady state in the mixture 
corresponding to the experimental conditions is only established after the transport of a mass of a 
component due to the temperature gradient (thermal diffusion) is compensated by the mass diffusion 
flux due to the concentration gradient which has arisen. The total diffusion fluxes in this case vanish 
and the flux is given by expression (6.25), which corresponds to Fourier’s law with a “true” thermal 
conductivity h. 
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Note that the coefficients q$ are related to the known coefficients A$ used in [3] by the relation 

(6.29) 

We will now write the system of equations (6.8)-(6.9) for the case when 5 = 2, using relation (6.29) 

(6.30) 

The coefficients hzb are defined by expressions (5.2). For the coefficients As and AZ; = AAt, we 
have [3] 

(6.3 1) 

(6.32) 

It is easily shown that Eqs (6.30) are completely equivalent to Eqs (4.1) and (5.1) obtained earlier 
in the approximation of 13N moments. Correspondingly, the expressions for the thermal conductivity 
and thermal diffusion coefficient are also identical. At the same time, the thermal diffusion ratio kTa 
is related to the thermal diffusion coefficients of particles of species a and p, introduced in the preceding 
section, by the relations 

(6.33) 

We now consider the equations for determining the partial viscous stress tensors and transform the 
coefficients in Eqs (6.4) using the relation 

or 

where 

dig = natlp[sifl( W”)( Wi W, - !j6i,W2), Sin( W’)( Wi Wk - !j8ikW2)]bp 

ii% = naRp[S&( W’)( WiWt - :8ikW’), S&(W2)( WiW,- !j8ikW2)Iia 

(6.34) 

(6.35) 

(6.36) 
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Equations (6.4) are then rewritten as 

where 

(6.37) 

(6.38) 

The partial viscous stress tensor is related to c$!~ by the relation ~,~k = x,0:1),. Solution of Eqs (6.37) 
gives 

%ik = -2Tla&ik, ZCik = -277&ik (6.39) 

where the partial and total coefficients of viscosity are determined by the expressions 

I 0 0 . . . 6,, 0 . . . 
5 1 

1,<5> = -?@“a 
x, 4; . . . Qf; $$+I . . . 

-In -1 n+l 
0 q;; . . . qrs q,; . . . 

I . . . . . . . . . . . . . . . . . . . . . . ...*.... 

. . . . . . . . . . . . . . . . . . 

(6.40) 

(6.41) 

The coefficient+& are related to the well-known Ferziger-Kaper coefficients H$ [3] by the relation 

(6.42) 

In the case when 5 = 1, the equations for determining X,ik take the form 

(6.43) 

which corresponds completely to Eqs (5.10) obtained in the approximation of 13N moments. 
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